Evolutionary self-adaptation: a survey of operators and strategy parameters
نویسنده
چکیده
The success of evolutionary search depends on adequate parameter settings. Ill conditioned strategy parameters decrease the success probabilities of genetic operators. Proper settings may change during the optimization process. The question arises if adequate settings can be found automatically during the optimization process. Evolution strategies gave an answer to the online parameter control problem decades ago: self-adaptation. Self-adaptation is the implicit search in the space of strategy parameters. The self-adaptive control of mutation strengths in evolution strategies turned out to be exceptionally successful. Nevertheless, for years self-adaptation has not achieved the attention it deserves. This paper is a survey of self-adaptive parameter control in evolutionary computation. It classifies self-adaptation in the taxonomy of parameter setting techniques, gives an overview of automatic online-controllable evolutionary operators and provides a coherent view on search techniques in the space of strategy parameters. Beyer and Sendhoff’s covariance matrix self-adaptation evolution strategy is reviewed as a successful example for self-adaptation and exemplarily tested for various concepts that are discussed.
منابع مشابه
Adaptation in Evolutionary Computation: A Survey
|Adaptation of parameters and operators is one of the most important and promising areas of research in evolutionary computation; it tunes the algorithm to the problemwhile solving the problem. In this paper we develop a classi cation of adaptation on the basis of the mechanisms used, and the level at which adaptation operates within the evolutionary algorithm. The classi cation covers all form...
متن کاملSelf-Adaptation in Evolutionary Algorithms
In this chapter, we will give an overview over self-adaptive methods in evolutionary algorithms. Self-adaptation in its purest meaning is a state-of-the-art method to adjust the setting of control parameters. It is called self-adaptive because the algorithm controls the setting of these parameters itself – embedding them into an individual’s genome and evolving them. We will start with a short ...
متن کاملTask Scheduling Algorithm Using Covariance Matrix Adaptation Evolution Strategy (CMA-ES) in Cloud Computing
The cloud computing is considered as a computational model which provides the uses requests with resources upon any demand and needs.The need for planning the scheduling of the user's jobs has emerged as an important challenge in the field of cloud computing. It is mainly due to several reasons, including ever-increasing advancements of information technology and an increase of applications and...
متن کاملConvergence in evolutionary programs with self-adaptation.
Evolutionary programs are capable of finding good solutions to difficult optimization problems. Previous analysis of their convergence properties has normally assumed the strategy parameters are kept constant, although in practice these parameters are dynamically altered. In this paper, we propose a modified version of the 1/5-success rule for self-adaptation in evolution strategies (ES). Forma...
متن کاملSequential Parameter Optimization Applied to Self-Adaptation for Binary-Coded Evolutionary Algorithms
Adjusting algorithm parameters to a given problem is of crucial importance for performance comparisons as well as for reliable (first) results on previously unknown problems, or with new algorithms. This also holds for parameters controlling adaptability features, as long as the optimization algorithm is not able to completely self-adapt itself to the posed problem and thereby get rid of all pa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Evolutionary Intelligence
دوره 3 شماره
صفحات -
تاریخ انتشار 2010